23 research outputs found

    Evaluation of protein surface roughness index using its heat denatured aggregates

    Get PDF
    Recent research works on potential of different protein surface describing parameters to predict protein surface properties gained significance for its possible implication in extracting clues on protein's functional site. In this direction, Surface Roughness Index, a surface topological parameter, showed its potential to predict SCOP-family of protein. The present work stands on the foundation of these works where a semi-empirical method for evaluation of Surface Roughness Index directly from its heat denatured protein aggregates (HDPA) was designed and demonstrated successfully. The steps followed consist, the extraction of a feature, Intensity Level Multifractal Dimension (ILMFD) from the microscopic images of HDPA, followed by the mapping of ILMFD into Surface Roughness Index (SRI) through recurrent backpropagation network (RBPN). Finally SRI for a particular protein was predicted by clustering of decisions obtained through feeding of multiple data into RBPN, to obtain general tendency of decision, as well as to discard the noisy dataset. The cluster centre of the largest cluster was found to be the best match for mapping of Surface Roughness Index of each protein in our study. The semi-empirical approach adopted in this paper, shows a way to evaluate protein's surface property without depending on its already evaluated structure

    CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

    Get PDF
    Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery

    Evaluation of protein surface roughness index using its heat denatured aggregates

    No full text
    corecore